\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (Civil Engg. CBCS) II-Semester Main Examinations, December-2018

Strength of Materials-I

Time: 3 hours
Max. Marks: 60
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question		
Part- $A(10 \times 2=20$ Marks $)$			
1. Define ductility of a material. Cite any two examples of ductile materials.			
2. Compute the expansion of a rod of 2.5 m length when its temperature is raised			

M	L	CO	PO
2	1	1	1
2	2	1	2
2	2	2	2
2	2	2	2
2	2	3	2
2	2	2	2
2	1	3	2
2	1	4	1
2	2	5	2

9. A spherical vessel of 2 m diameter is subjected to an internal pressure of 3 $\mathrm{N} / \mathrm{mm}^{2}$. Compute the thickness of the plate required if maximum stress is not to exceed $150 \mathrm{~N} / \mathrm{mm}^{2}$.
10. State the formulae to compute circumferential and radial stresses across the thickness of a thick cylindrical shell using Lame's theory.

$$
\text { Part-B }(5 \times 8=40 \text { Marks })
$$

11. a) A steel rod 4 m long and 20 mm diameter is subjected to an axial tensile load of 40 kN . Compute the change in length, diameter and volume of the rod. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $\mu=0.25$.
b) A steel rod of 25 mm diameter passes centrally through a hollow copper tube of internal and external diameters of 35 mm and 45 mm respectively. The tube is closed at either end with thin washers and nuts are tightened over them. If the temperature of the assembly is raised by $50^{\circ} \mathrm{C}$, compute the stresses developed in the rod and the tube. Adopt $E_{S}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and E_{C} $=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \alpha_{\mathrm{S}}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\alpha_{\mathrm{C}}=18 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
12. a) A cantilever beam of span 4 m subjected to uniformly distributed load of 20 kN / m over the entire span in addition to a point load of 100 kN at the free end. Analyze the beam and draw the shear force and bending moment diagrams.
b) Analyze the overhanging beam as shown in the figure and draw the shear force and bending moment diagrams. Mark all the salient values.

13. a) Derive the formula of theory of simple bending:

$$
\frac{M}{I}=\frac{\sigma}{y}=\frac{E}{R}
$$

b) A beam of T-section has the flange 250 mm wide and 25 mm thick and web 50 mm wide and 400 mm deep. It carries a shear force of 200 kN at a cross section. Compute shear stresses at salient points and sketch shear stress distribution across the depth of the T-section.
14. a) A hollow circular chimney of internal diameter 2.2 m and thickness 0.3 m is 20 m tall. Density of the material of the chimney is $25 \mathrm{kN} / \mathrm{m}^{3}$. Compute wind load the chimney can resist so that no tension develops anywhere on the chimney. Assume that wind acts uniformly across the height of the chimney.
b) At a certain point in a strained material, the stresses on two planes at right angles to each other are $25 \mathrm{~N} / \mathrm{mm}^{2}$ and $15 \mathrm{~N} / \mathrm{mm}^{2}$, both tensile. Compute the location of the principal planes and evaluate the principal stresses.
15. a) Compute the thickness of metal necessary for a thin cylindrical shell of internal diameter 120 mm to withstand an internal pressure of $8 \mathrm{~N} / \mathrm{mm}^{2}$. The maximum hoop stress in the section is not to exceed $35 \mathrm{~N} / \mathrm{mm}^{2}$
b) Compute the maximum and minimum hoop stress across the section of a pipe of 350 mm diameter and 80 mm thick, when the pipe contains a fluid at a pressure of $8 \mathrm{~N} / \mathrm{mm}^{2}$. Also sketch the radial pressure distribution and hoop stress distribution across the section.
16. a) A reinforced concrete column of dimensions $300 \mathrm{~mm} \times 400 \mathrm{~mm}$ is reinforced with 4 numbers of 20 mm diameter steel bars. The column is subjected to a compressive load of 400 kN . Compute the stresses in concrete and steel. Modulus of elasticity of steel is 15 times the modulus of elasticity of concrete.
b) Sketch the shear force and bending moment diagrams for the simply supported beam shown below:

17. Answer any two of the following:
a) An I-section is subjected to a shear force of 50 kN . The top and bottom flanges have a width of 250 mm and a thickness of 25 mm while the web has a width of 25 mm and a depth of 250 mm . Sketch the shear stress distribution across the cross section.
b) A short column of rectangular cross-section is $80 \mathrm{~mm} \times 60 \mathrm{~mm}$ carries a load of 40 kN at a point 15 mm from the longer side and 20 mm from the shorter side. Compute the maximum compressive and tensile stresses in the section.
c) Compute the thickness of metal required for a thick cylinder of 160 mm internal diameter to withstand an internal pressure of $8 \mathrm{~N} / \mathrm{mm}^{2}$ if the maximum hoop stress in the section is not to exceed $35 \mathrm{~N} / \mathrm{mm}^{2}$.
$\begin{array}{lll}4 & 3 & 2\end{array}$

4332
$\begin{array}{llll}4 & 3 & 5 & 2\end{array}$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Program Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	54
2	Knowledge on application and analysis (Level-3 \& 4)	46
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	--

