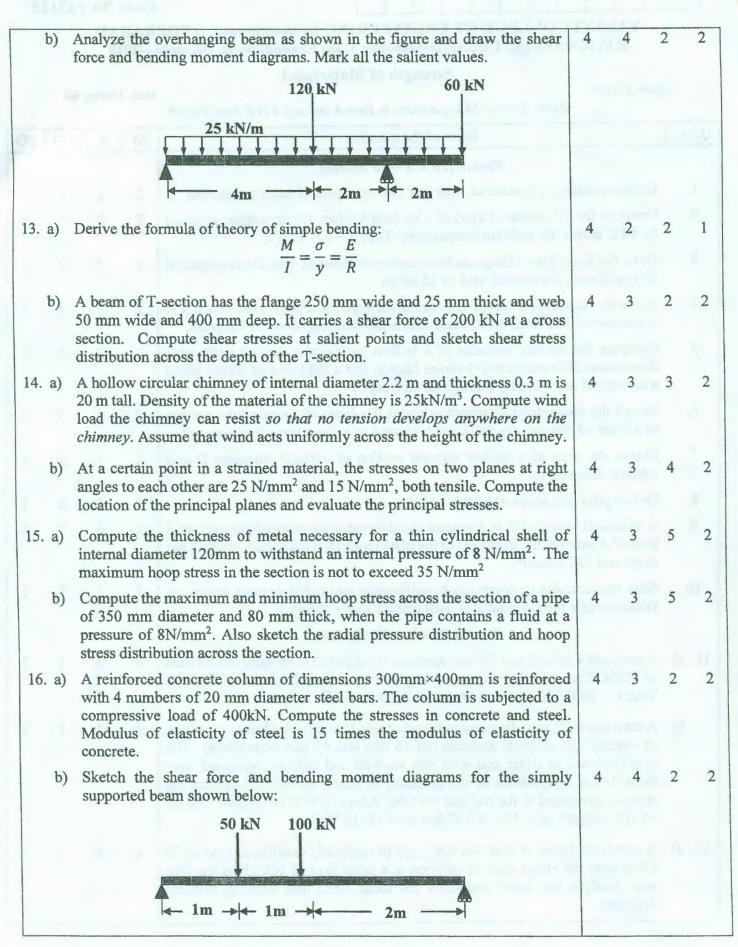
Hall Ticket Number:

## Code No. : 13115

## VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (Civil Engg.: CBCS) III-Semester Main Examinations, December-2018


## Strength of Materials-I

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

| Q.No.  | Stem of the question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Μ | L | CO | PO |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|----|
|        | Part-A (10 × 2 = 20 Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |    |    |
| 1.     | Define ductility of a material. Cite any two examples of ductile materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 | 1 | 1  | 1  |
| 2.     | Compute the expansion of a rod of 2.5m length when its temperature is raised by $60^{\circ}$ C above the ambient temperature. Take $\alpha = 12 \times 10^{-6}/^{\circ}$ C                                                                                                                                                                                                                                                                                                                                                             | 2 | 2 | 1  | 2  |
| 3.     | Draw the Shear Force Diagram for a cantilever beam of span 2m is subjected to a uniformly distributed load of 15 kN/m.                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 | 2 | 2  | 2  |
| 4.     | A simply supported beam of span 5m is subjected to a point load of 60kN at a distance of 3 m from the left end. Draw the Bending Moment Diagram.                                                                                                                                                                                                                                                                                                                                                                                       | 2 | 2 | 2  | 2  |
| 5.     | Compute the section modulus of a hollow rectangular section with outer dimensions 200mm(width)×140mm (depth) and a thickness of 20mm about a horizontal axis passing through its mid-depth.                                                                                                                                                                                                                                                                                                                                            | 2 | 2 | 3  | 2  |
| 6.     | Sketch the shear stress distribution across the depth of a rectangular section of a beam of dimensions B×D and subjected to a shear force F at a section.                                                                                                                                                                                                                                                                                                                                                                              | 2 | 2 | 2  | 2  |
| 7.     | Sketch the core of a hollow circular section of external diameter D and internal diameter d.                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 | 1 | 3  | 2  |
| 8.     | Define principal stress and principal strain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 | 1 | 4  | 1  |
| 9.     | A spherical vessel of 2 m diameter is subjected to an internal pressure of 3 $N/mm^2$ . Compute the thickness of the plate required if maximum stress is not to exceed 150 $N/mm^2$ .                                                                                                                                                                                                                                                                                                                                                  | 2 | 2 | 5  | 2  |
| 10.    | State the formulae to compute circumferential and radial stresses across the thickness of a thick cylindrical shell using Lame's theory.                                                                                                                                                                                                                                                                                                                                                                                               | 2 | 1 | 5  | 1  |
|        | Part-B $(5 \times 8 = 40 \text{ Marks})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |    |    |
| 11. a) | A steel rod 4 m long and 20 mm diameter is subjected to an axial tensile load of 40kN. Compute the change in length, diameter and volume of the rod. Take $E = 2 \times 10^5$ N/mm <sup>2</sup> and Poisson's ratio $\mu = 0.25$ .                                                                                                                                                                                                                                                                                                     | 4 | 2 | 1  | 2  |
| b)     | A steel rod of 25 mm diameter passes centrally through a hollow copper tube<br>of internal and external diameters of 35 mm and 45 mm respectively. The<br>tube is closed at either end with thin washers and nuts are tightened over<br>them. If the temperature of the assembly is raised by 50° C, compute the<br>stresses developed in the rod and the tube. Adopt $E_S = 2 \times 10^5 \text{ N/mm}^2$ and $E_C = 1 \times 10^5 \text{ N/mm}^2$ , $\alpha_S = 12 \times 10^{-6}/^{0}$ C and $\alpha_C = 18 \times 10^{-6}/^{0}$ C. |   | 2 | 1  | 2  |
| 12. a) | A cantilever beam of span 4m subjected to uniformly distributed load of 20 kN/m over the entire span in addition to a point load of 100 kN at the free end. Analyze the beam and draw the shear force and bending moment diagrams.                                                                                                                                                                                                                                                                                                     |   | 4 | 2  | 2  |



:: 2 ::

Contd...3

| 17. | Answer any two of the following:                                                                                                                                                                                                                       |   |   |   |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|
| a)  | An I-section is subjected to a shear force of 50kN. The top and bottom flanges have a width of 250 mm and a thickness of 25 mm while the web has a width of 25 mm and a depth of 250mm. Sketch the shear stress distribution across the cross section. | 4 | 3 | 2 | 2 |
| b)  | A short column of rectangular cross-section is 80mm×60mm carries a load of 40kN at a point 15 mm from the longer side and 20 mm from the shorter side. Compute the maximum compressive and tensile stresses in the section.                            | 4 | 3 | 3 | 2 |
| c)  | Compute the thickness of metal required for a thick cylinder of 160mm internal diameter to withstand an internal pressure of 8N/mm <sup>2</sup> if the maximum hoop stress in the section is not to exceed 35 N/mm <sup>2</sup> .                      | 4 | 3 | 5 | 2 |

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Program Outcome

| S. No. | Criteria for questions                                 | Percentage |  |
|--------|--------------------------------------------------------|------------|--|
| 1      | Fundamental knowledge (Level-1 & 2)                    | 54         |  |
| 2      | Knowledge on application and analysis (Level-3 & 4)    | 46         |  |
| 3      | *Critical thinking and ability to design (Level-5 & 6) |            |  |
|        | (*wherever applicable)                                 |            |  |

**֎֎֎֎֎**